
Networking and Socket
Communication

Fundamentals of Computer Science

Outline

 Networking basics
 Difference between: clients and servers
 Addressing

 IP addresses, hostnames, DNS
 Private addresses, localhost

 Port numbers

 Socket communication
 Byte-level communication between two hosts
 Java client: reading/writing text
 Java server: accepting clients, reading/writing text

 Single threaded examples
 Magic-8 ball
 Magic-8 ball persistent

 Multi-threaded servers
 Magic-8 ball multi-threaded server
 Shared key/value server

Clients and Servers

 Client program

 Requests a service

 Web browser

 Streaming audio player

 Twitter client

 MMOG client

• Server program

– Provides a service

• Web server

• Streaming audio from
radio station

• Server at Twitter

• MMOG server

Clients and Servers

 Client program

 "sometimes on"

 Doesn't talk to other clients

 Needs to know server's
address

• Server program

– "always on"

– Handles requests from
many clients

– Needs fixed address

Communication Components

 Network

 Transports data from source to destination host

 Uses destination IP address

 Operating system

 Data is forwarded to a "silo" based on port #

 e.g. Port 80 requests routed to the web server program

 Application

 Actually reads and writes to socket

 Implements application-specific "magic"

 e.g. Implementing a mail reading/writing protocol

 e.g. Implementing a file retrieval (FTP) protocol

 e.g. Implementing a particular online game

Naming Computers

 Goal: Establish communication between A and B

 How do computer A and B refer to each other?

 The network needs an addressing system

 IP (Internet Protocol) address

 IPv4 address

 32 bits ~ 4 billion hosts

 Usually expressed as four numbers 0-255 (8 bits)

 e.g. 173.194.79.106

 IP address uniquely identifies a network endpoint

 Devices inside network (e.g. switches, routers) use a packet's IP
address to get it to its destination

Communication from H5 to H8

173.194.79.106

179.200.1.10

DNS – Domain Name System

 Problem 1: Humans can't remember all the
numbers in an IP address

 Domain Name System (DNS)

 Converts readable name to numeric IP address

 e.g. www.google.com -> 173.194.79.106

http://xkcd.com/302/

http://xkcd.com/302/

IPv4 exhaustion

 Problem 2: IPv4 only has 4 billion addresses
 7 billion people, all want a laptop, Xbox & iPhone

 Jan. 31, 2011
 Last unreserved IANA /8 blocks allocated

 5 remaining blocks allocated to Regional Internet registries (RIR)

 IPv6 went live in 2012

Private IP addresses

 Private IP addresses

 Allow construction of a private network

 Route data between endpoints on the private network

 Addresses aren't valid outside network

 192.168.x.x, 10.x.x.x, 172.16/31.x.x

 Typically what you'll have:

 On home network

 On campus network (wired/wireless)

 127.0.0.1 (localhost)

http://xkcd.com/742/

http://xkcd.com/742/

Port Numbers

 Problem 3: Many apps on same computer want to
talk at same time

 Chrome process:

 Browser tab 1 wants: http://google.com

 Browser tab 2 wants: http://google.com/gmail

 Browser tab 3 wants: http://facebook.com

 Thunderbird process:

 Email client wants IMAP4 to techmail.mtech.edu

 Solution: Use IP address + port number

 A 16-bit number: 0 - 65535

 Port number determines app message is routed to

 Just a "virtual" port, only exists in the OS

Port Numbers

 Popular applications have known ports
 Ports 0 - 1023: reserved for well-known services

 Only administrators can start servers on these ports

 Ports 1024 - 65535: available to any user-level application

Port Service

21 File transfer protocol (FTP)

22 Secure shell (SSH)

23 Telnet

25 Simple mail transfer protocol (SMTP)

53 Domain name system (DNS)

80 Hypertext transfer protocol (HTTP)

110 Post office protocol (POP)

143 Internet message access protocol
(IMAP)

443 HTTP secure (HTTPS)

Use of Port Number

192.168.23.100:80 Requesting a non-
secure web page

web
server

mail
server

OS

192.168.23.100:443 Requesting a
secure web page

web
server

mail
server

OS

192.168.23.100:143 Requesting new
email messages

web
server

mail
server

OS

Firewalls

 Problem 4: You can't always get there from here:

 Communication may by filtered by network

 e.g. by a firewall at the border of Tech's network

 e.g. by the wireless access point in Main Hall

 Often by the port number

Sockets

• Socket API (Application Programming Interface)

– Allows communication over IP (Internet Protocol)

– Originally in Berkeley Unix

• Thus: Berkeley sockets or BSD sockets

– De facto standard in all operating systems

– API in most programming languages:

– C/C++

– Java

– C#

– …

Java Client: Reading from a Socket

 Step 1: Create a new Socket object

 Needs to know IP address of server + port number

 Step 2: Create an InputStreamReader
 Converts low-level socket data into characters stream

 Step 3: Create a BufferedReader
 Provides buffered reading of character stream

 Step 4: Read some text

Socket socket = new Socket("127.0.0.1", 5000);

InputStreamReader stream = new InputStreamReader(socket.getInputStream());

BufferedReader reader = new BufferedReader(stream);

String message = reader.readLine();

BufferedReader

Java Client: Writing to a Socket

 Step 1: Create a new Socket object

 Or use an existing one

 You can combine reads and writes to same socket

 Step 2: Create an PrintWriter
 Seen previously when writing to a file

 Step 3: Write something

Socket socket = new Socket("127.0.0.1", 5000);

PrintWriter writer = new PrintWriter(socket.getOutputStream(), true);

writer.println("Hello over there!");

PrintWriter

Just some of
the methods in

PrintWriter

Java Socket Server

 Client needs somebody to talk to!

 Server slightly different than client:

 Must be running before client connects

 Server decides port number to listen on

 But doesn't specify IP address

 Doesn't know who is going to connect

 Blocks, waiting to accept an incoming client

 Then reading/writing just as in client

Java Socket Server

 Step 1: Create a ServerSocket object

 Declares what port you are listening on

 Nobody else on the computer better be using it!

 Step 2: Wait for a client to connect

 accept() method blocks until client arrives

 Returns a new Socket object for talking to client

 Step 3: Read/write same way as a client

 Create BufferedReader for reading strings

 Create PrintWriter for writing strings

ServerSocket serverSock = new ServerSocket(5000);

Socket sock = serverSock.accept();

Connection Process
1. Server program starts up.
2. Starts listening on port 4242.
3. OS sends all inbound

connection requests to 4242 to
the server program.

4. Client program starts up
5. Requests connection to server

IP address on port 4242.

6. Server establishes a socket
connection to client, using
outgoing port number 2789

7. Server can listen for new clients
on the 4242 port number.

Magic 8 ball: Internet Edition

 Server:

 katie.mtech.edu – dept. server

 Public IP address

 Running on port 5000

 Delivers 1 of 20 messages at random

 Client:

 My laptop on the wireless network

 Your desktop on the wired network

 Both have a private IP address

 Displays message from the server

Server @ 150.131.202.152
katie.mtech.edu

% java Magic8Server
5000

% java ValueServer 6000

% java ValueClient
150.131.202.152 6000

% java ValueClient
katie.mtech.edu 6000

% java Magic8Client
150.131.202.152
5000

Client1 @ 192.168.1.100

Client2 @ 192.168.1.110

Client3 @ 192.168.1.120

Thread 1

Thread
2

24

Communication Reliability

 Socket communication protocol:

 We'll use TCP (Transmission Control Protocol)

 TCP/IP = TCP over IP (Internet Protocol)

 IP protocol:

 De facto standard for Internet communication

 But: only provides "best effort" delivery

 Messages may or may not get there

 Messages may get reordered in transit

 Luckily: TCP provides reliable in-order delivery

 You can be sure what you read/write will get there (unless
something really bad happens)

Establishing a Connection

Client Server

 Starting a socket connection:
 3-way handshake

 Connection takes a bit to startup

 Keep around if you have an ongoing conversation

Latency

 Signals can only go so fast:

Medium Speed of light

Vacuum 3.0 x 108 m/s

Copper cable 2.3 x 108 m/s

Optical fiber 2.0 x 108 m/s

http://xkcd.com/723/

http://xkcd.com/723/

Latency

• latency = propagation + transmit + queue

• propagation = distance / speed of light

• transmit = size / bandwidth

latency

propagation transmit queue

Queuing delays
inside the network,
e.g. processing by a
router

More important for
short messages, bits
only go as fast as
speed of light

More important for
long messages,
getting the bits on
the wire

28

Firewalls

 Network hardware/software may interfere

 e.g. Hosts on the same network but traffic blocked for certain
port numbers

 katie.mtech.edu
150.131.202.152

Keith's laptop
10.1.20.100

William's laptop
10.1.20.101

% java Magic8Server
5000

% java Magic8Server
5000

% java Magic8Client
10.1.20.100 5000

This failed, wireless access point
(AP) blocked attempt to connect
to port 5000 on 10.1.20.100

Handy network utilities

 ping <hostname or IP address>

 Test if you can reach the destination

 Time for a tiny message to go there and come back

 Round Trip Time (RTT)

 Note: some hosts may disable responding to pings
% ping keithv.com

Pinging keithv.com [69.164.194.211] with 32 bytes of data:
Reply from 69.164.194.211: bytes=32 time=123ms TTL=44
Reply from 69.164.194.211: bytes=32 time=123ms TTL=44
Reply from 69.164.194.211: bytes=32 time=121ms TTL=44
Reply from 69.164.194.211: bytes=32 time=119ms TTL=44

Ping statistics for 69.164.194.211:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
 Minimum = 119ms, Maximum = 123ms, Average = 121ms

% ping katie.mtech.edu

Pinging katie.mtech.edu [150.131.202.152] with 32 bytes of data:
Request timed out.
Request timed out.
Request timed out.
Request timed out.

Ping statistics for 150.131.202.152:
 Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),

% ping bbc.co.uk

Pinging bbc.co.uk [212.58.241.131] with 32 bytes of data:
Reply from 212.58.241.131: bytes=32 time=162ms TTL=229
Reply from 212.58.241.131: bytes=32 time=160ms TTL=229
Reply from 212.58.241.131: bytes=32 time=162ms TTL=229
Reply from 212.58.241.131: bytes=32 time=163ms TTL=229

Ping statistics for 212.58.241.131:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
 Minimum = 160ms, Maximum = 163ms, Average = 161ms

Handy network utilities

 ipconfig (Windows), ifconfig (Mac/unix)

 Find out your wired/wireless IP address

c:\ipconfig

Windows IP Configuration

Ethernet adapter Local Area Connection:

 Connection-specific DNS Suffix . : passcall
 Link-local IPv6 Address : fe80::615f:559:cfb6:8d35%10
 IPv4 Address. : 192.168.1.6
 Subnet Mask : 255.255.255.0
 Default Gateway : 192.168.1.1

Magic 8 ball: Internet Edition

 Server:

 katie.mtech.edu, public IP address

 Running on port 5000

 Delivering 1 of 20 messages

 Services a single client at a time

 Client(s):

 My laptop on the wireless network

 Your laptop on the wireless network

 Private IP address

 Displays message from the server

Magic 8 ball: Persistent Connections

 Original version: One prediction per connection

 Persistent version:
 A protocol between client and server

Client Server

Wait for client

Make connection to server

Send name of user

Send first fortune

Receive first fortune

Send "MORE"

Receive command "MORE"

Send second fortune

Receive second fortune

Send "QUIT"

Close socket Receive command "QUIT"

Close socket

Magic 8 ball: Multi-threaded server

 Problem with persistent
version:

 One client can hog the 8-ball
for a long time

 Multi-threaded server:

 Spawn a thread to handle
each client

 Server's main thread can
then wait for a new client

Summary

 Networking basics
 Difference between: clients and servers
 Addressing

 IP addresses, hostnames, DNS
 Private addresses, localhost

 Port numbers

 Socket communication
 Byte-level communication between two hosts
 Java client: reading/writing text
 Java server: accepting clients, reading/writing text

 Single threaded examples
 Magic-8 ball
 Magic-8 ball persistent

 Multi-threaded servers
 Magic-8 ball multi-threaded server
 Shared key/value server

