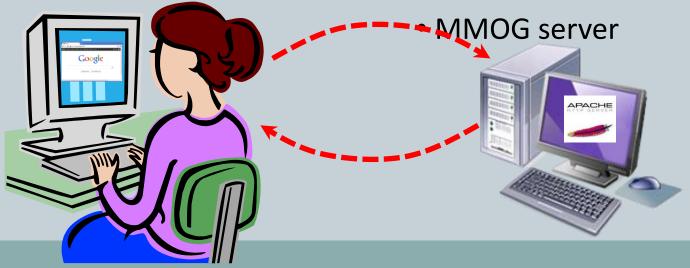

Networking and Socket Communication

Fundamentals of Computer Science

Outline

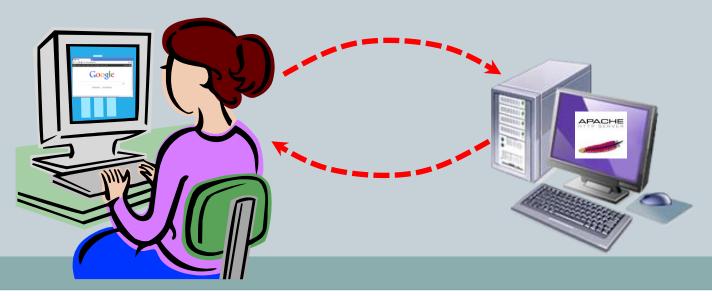

• Networking basics

- Difference between: clients and servers
- Addressing
 - × IP addresses, hostnames, DNS
 - × Private addresses, localhost
- Port numbers
- Socket communication
 - Byte-level communication between two hosts
 - Java client: reading/writing text
 - Java server: accepting clients, reading/writing text
- Single threaded examples
 - Magic-8 ball
 - Magic-8 ball persistent
- Multi-threaded servers
 - Magic-8 ball multi-threaded server
 - Shared key/value server

Clients and Servers

- Client program
 - Requests a service
 - × Web browser
 - × Streaming audio player
 - × Twitter client
 - × MMOG client

- Server program
 - Provides a service
 - Web server
 - Streaming audio from radio station
 - Server at Twitter

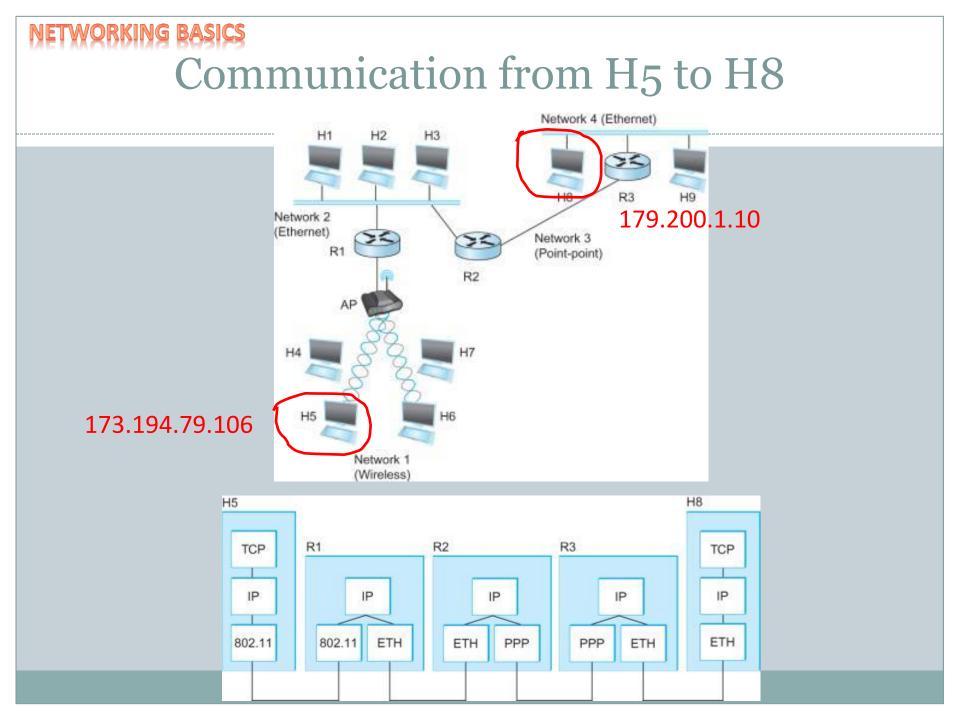

Clients and Servers

Client program

- "sometimes on"
- Doesn't talk to other clients
- Needs to know server's address

• Server program

- "always on"
- Handles requests from many clients
- Needs fixed address


Communication Components

Network

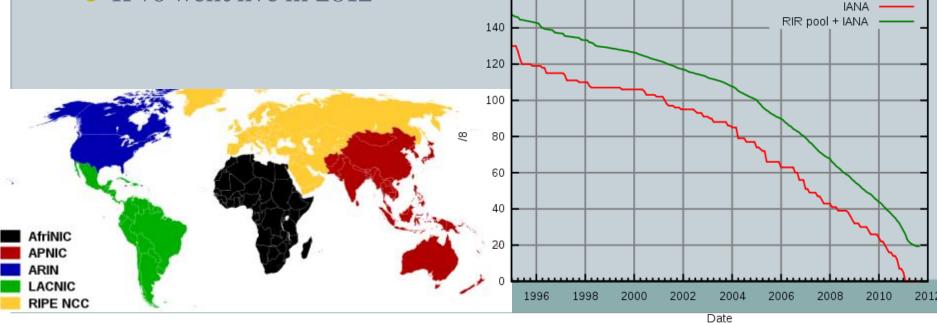
- Transports data from source to destination host
- Uses destination IP address
- Operating system
 - Data is forwarded to a "silo" based on port #
 - × e.g. Port 80 requests routed to the web server program
- Application
 - Actually reads and writes to socket
 - Implements application-specific "magic"
 - × e.g. Implementing a mail reading/writing protocol
 - × e.g. Implementing a file retrieval (FTP) protocol
 - × e.g. Implementing a particular online game

Naming Computers

- Goal: Establish communication between A and B
 - How do computer A and B refer to each other?
 - The network needs an addressing system
- IP (Internet Protocol) address
 - IPv4 address
 - × 32 bits ~ 4 billion hosts
 - × Usually expressed as four numbers 0-255 (8 bits)
 - × e.g. 173.194.79.106
 - IP address uniquely identifies a network endpoint
 - Devices inside network (e.g. switches, routers) use a packet's IP address to get it to its destination

DNS – Domain Name System

- **Problem 1:** Humans can't remember all the numbers in an IP address
- Domain Name System (DNS)
 - o Converts readable name to numeric IP address
 - × e.g. www.google.com -> 173.194.79.106



IPv4 exhaustion

- Problem 2: IPv4 only has 4 billion addresses
 7 billion people, all want a laptop, Xbox & iPhone
- Jan. 31, 2011
 - o Last unreserved IANA /8 blocks allocated
 - 5 remaining blocks allocated to Regional Internet registries (RIR)

160

• IPv6 went live in 2012

Private IP addresses

• Private IP addresses

- Allow construction of a private network
 - × Route data between endpoints on the private network
 - × Addresses aren't valid outside network
 - × 192.168.x.x, 10.x.x.x, 172.16/31.x.x
- Typically what you'll have:
 - × On home network
 - On campus network (wired/wireless)
- o 127.0.0.1 (localhost)

TWORKING BASICS

Port Numbers

- **Problem 3:** Many apps on same computer want to talk at same time
 - Chrome process:
 - Browser tab 1 wants: http://google.com
 - Browser tab 2 wants: http://google.com/gmail
 - Browser tab 3 wants: http://facebook.com
 - Thunderbird process:
 - × Email client wants IMAP4 to techmail.mtech.edu
- Solution: Use IP address + port number
 - A 16-bit number: 0 65535
 - × Port number determines app message is routed to
 - × Just a "virtual" port, only exists in the OS

NETWORKING BASICS

Port Numbers

- Popular applications have known ports
 - Ports 0 1023: reserved for well-known services
 - × Only administrators can start servers on these ports
 - Ports 1024 65535: available to any user-level application

Port	Service
21	File transfer protocol (FTP)
22	Secure shell (SSH)
23	Telnet
25	Simple mail transfer protocol (SMTP)
53	Domain name system (DNS)
80	Hypertext transfer protocol (HTTP)
110	Post office protocol (POP)
143	Internet message access protocol (IMAP)
443	HTTP secure (HTTPS)

Use of Port Number

Requesting a nonsecure web page

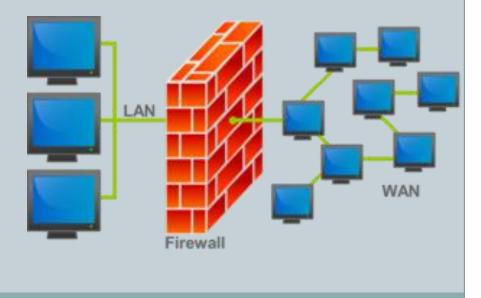
Requesting a secure web page

192.168.23.100:80

OS Mail serve

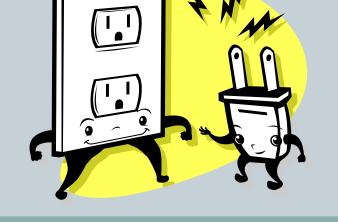
192.168.23.100:443

server S mail server


Requesting new email messages 192.168.23.100:143

NETWORKING BASICS

Firewalls


- Problem 4: You can't always get there from here:
 - Communication may by filtered by network
 - e.g. by a firewall at the border of Tech's network
 - × e.g. by the wireless access point in Main Hall
 - Often by the port number

Sockets

- Socket API (Application Programming Interface)
 - Allows communication over IP (Internet Protocol)
 - Originally in Berkeley Unix
 - Thus: Berkeley sockets or BSD sockets
 - De facto standard in all operating systems
 - API in most programming languages:
 - C/C++
 - Java
 - C#

Java Client: Reading from a Socket

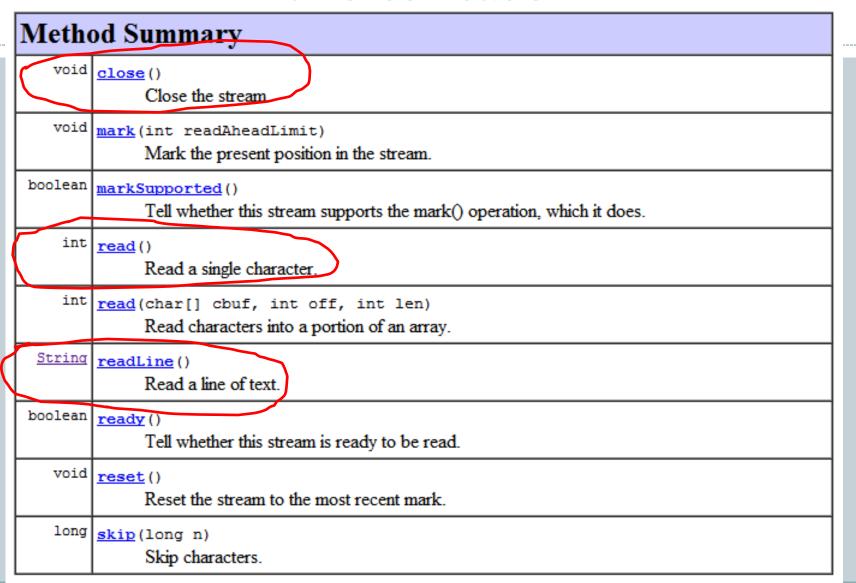
- Step 1: Create a new Socket object
 - Needs to know IP address of server + port number

Socket socket = new Socket("127.0.0.1", 5000);

- Step 2: Create an InputStreamReader
 - Converts low-level socket data into characters stream

InputStreamReader stream = new InputStreamReader(socket.getInputStream());

- Step 3: Create a BufferedReader
 - Provides buffered reading of character stream


BufferedReader reader = new BufferedReader(stream);

• Step 4: Read some text

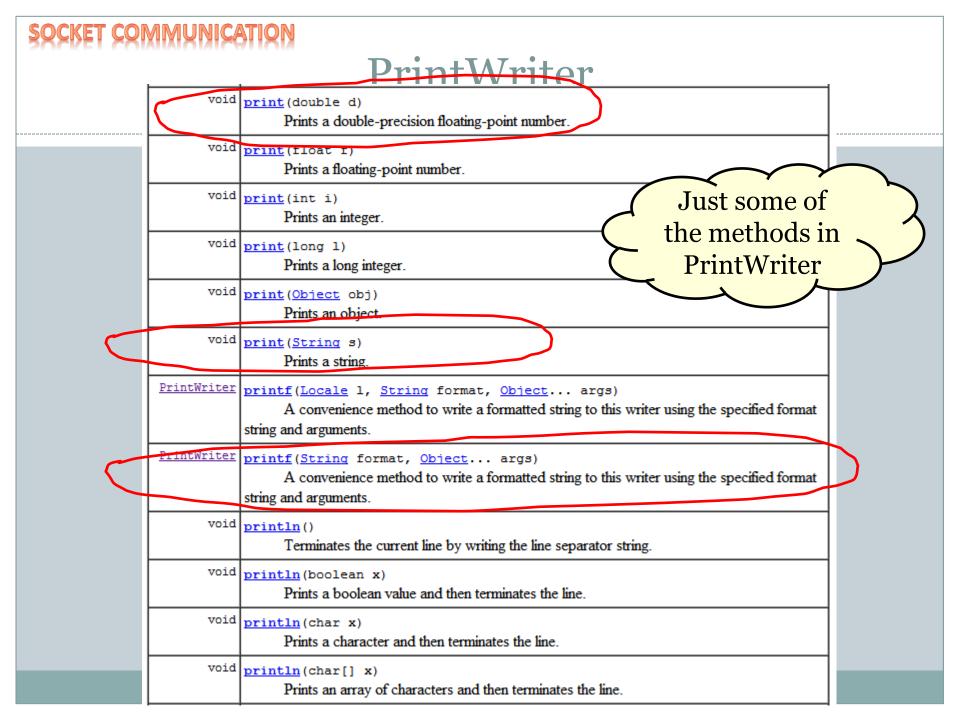
String message = reader.readLine();

SOCKET COMMUNICATION

BufferedReader

Java Client: Writing to a Socket

- Step 1: Create a new Socket object
 - Or use an existing one
 - You can combine reads and writes to same socket


Socket socket = new Socket("127.0.0.1", 5000);

- Step 2: Create an PrintWriter
 - Seen previously when writing to a file

PrintWriter writer = new PrintWriter(socket.getOutputStream(), true);

• Step 3: Write something

writer.println("Hello over there!");

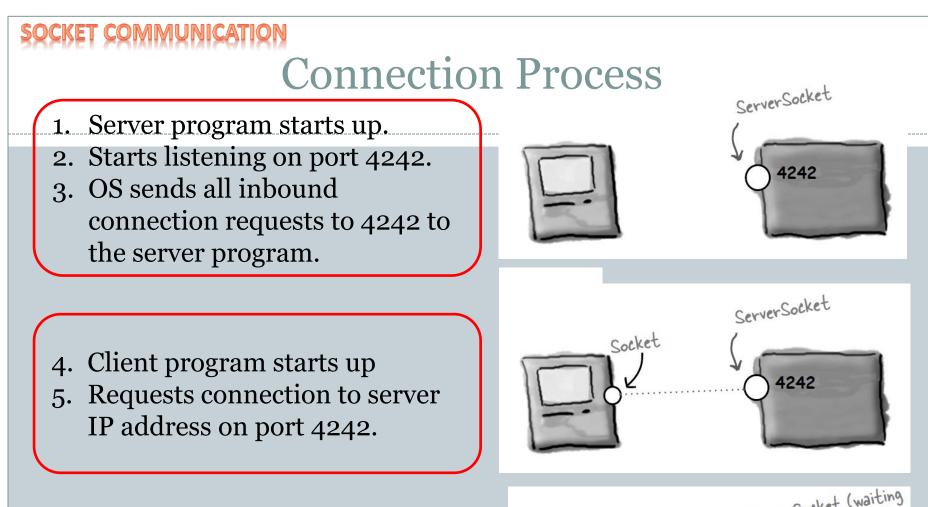
Java Socket Server

- Client needs somebody to talk to!
- Server slightly different than client:
 - Must be running before client connects
 - Server decides port number to listen on
 - × But doesn't specify IP address
 - × Doesn't know who is going to connect
 - Blocks, waiting to *accept* an incoming client
 - Then reading/writing just as in client

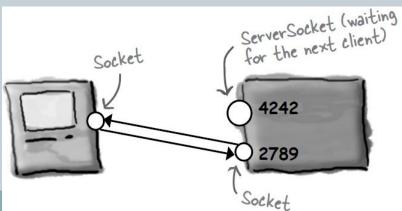
SOCKET COMMUNICATION Java Socket Server

- **Step 1:** Create a **ServerSocket** object
 - Declares what port you are listening on
 - Nobody else on the computer better be using it!

ServerSocket serverSock = new ServerSocket(5000);


- **Step 2:** Wait for a client to connect
 - o accept() method blocks until client arrives
 - Returns a new Socket object for talking to client

Socket sock = serverSock.accept();

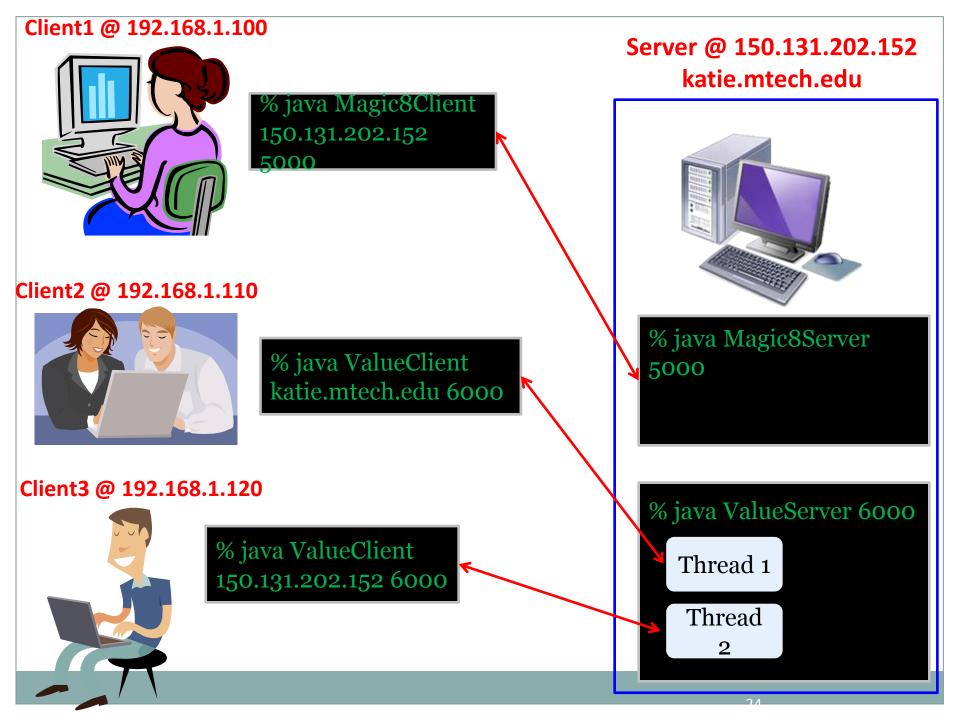

• **Step 3:** Read/write same way as a client

• Create BufferedReader for reading strings

• Create PrintWriter for writing strings

- 6. Server establishes a socket connection to client, using outgoing port number 2789
 7. Server can listen for new clients
- on the 4242 port number.

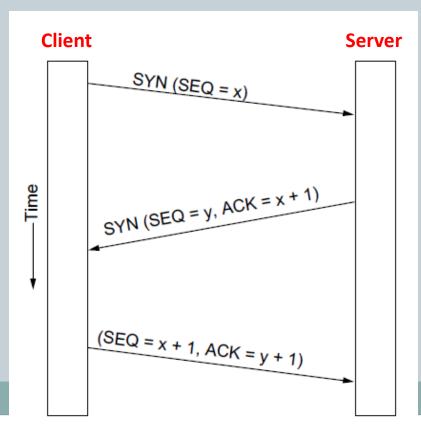
SINGLE-THREARER EXAMPLE Magic 8 ball: Internet Edition


• Server:

- o katie.mtech.edu dept. server
- Public IP address
- Running on port 5000
- Delivers 1 of 20 messages at random

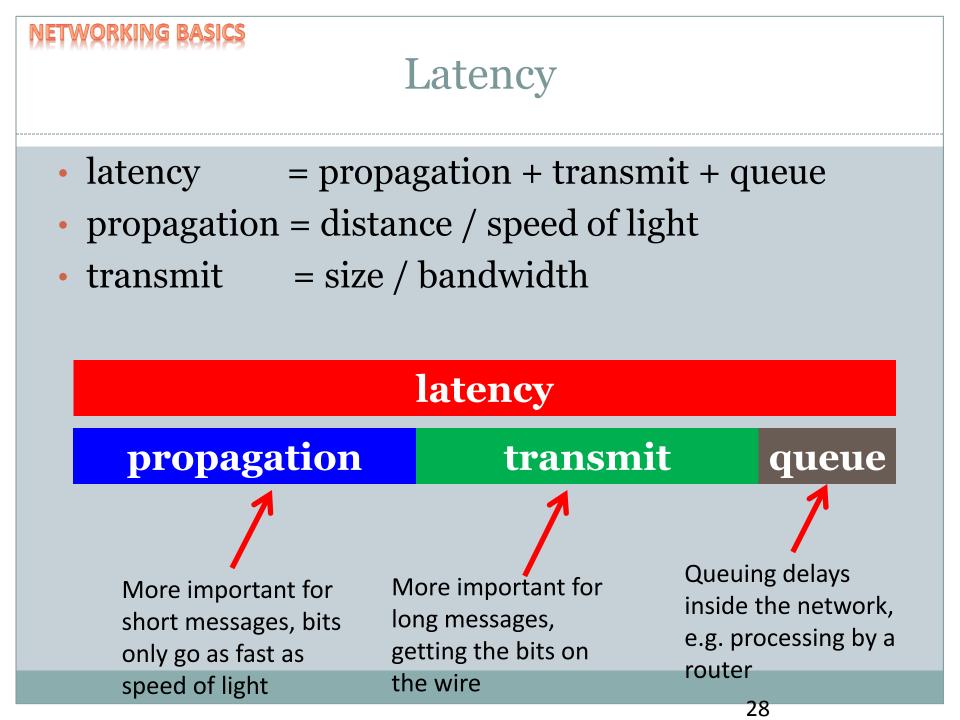
• Client:

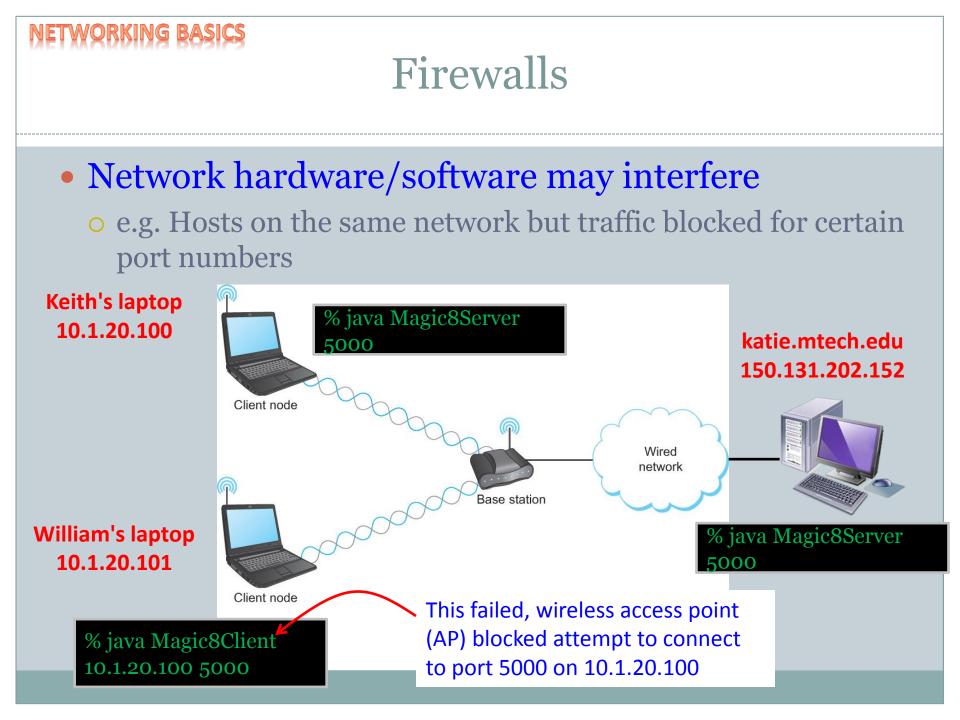
- My laptop on the wireless network
- Your desktop on the wired network
 - × Both have a private IP address
- Displays message from the server



KET COMMUNICATION Communication Reliability

- Socket communication protocol:
 - We'll use **TCP** (Transmission Control Protocol)
 - TCP/IP = TCP over IP (Internet Protocol)
 - IP protocol:
 - × De facto standard for Internet communication
 - × But: only provides "best effort" delivery
 - Messages may or may not get there
 - Messages may get reordered in transit
 - Luckily: TCP provides reliable in-order delivery
 - You can be sure what you read/write will get there (unless something really bad happens)


Establishing a Connection


- Starting a socket connection:
 - 3-way handshake
 - o Connection takes a bit to startup
 - Keep around if you have an ongoing conversation

NETWORKING BASICS Latency						
• Signals can only go so fast:						
	Medium		Speed of	of light		
	Vacuum		3.0 x 10 ⁸	³ m/s		
Copper cable			2.3 x 10 ⁸	³ m/s		
Optical fiber			2.0 X 10 ⁸	³ m/s		
				·		
WHEN AN EARTHQUAKE HI PEOPLE FLOOD THE INTERN WITH POSTS ABOUT IT-SOM WITH IN 20 OR 30 SECOND ROBINGS HUGE EARTHQUAKE HERE!	NET WAVES TRAVEL AT TE 3-5 1%, FIBER	WAVES ARE ABOUT THEY BEGIN TO BE THE WAVES OF POST	T 100 km OUT, OVERTAKEN BY	PEOPLE OUTSIDE THIS RADIUS MAY GET WORD OF THE QUAKE VIA TWITTER, IRC, OR SMS BEFORE THE SHAKING HITS. WHOA! EARTHQUAKE!	SADLY, A TWITTERER'S FIRST INSTINCT IS NOT TO FIND SHELTER. RT @ ROBITIG3 HUGE EARTHQUAKE HERE!	

http://xkcd.com/723/

Handy network utilities

- ping <hostname or IP address>
 - Test if you can reach the destination
 - × Time for a tiny message to go there and come back
 - Round Trip Time (RTT)
 - × Note: some hosts may disable responding to pings

% ping keithv.com

		• • • . •			
	Pin	% ping kati	e.mtech.edu		
	Rep1				
	Rep]	Pinging kat	% ping bbc.co.uk		
	Rep1	0 0			
	Repl	Request tim	Pinging bbc.co.uk [212.58.241.131] with 32 bytes of data:		
		Requese ern	Reply from 212 58 241 131 bytes=32 fime=162ms $ 1 =229$		
	Ping	Request tim	Reply from 212.58.241.131: bytes=32 time=160ms TTL=229		
	PIUS	Request tim	$\begin{array}{c} \text{Reply from 212.50.241.151. by tes -52 time -100ms free -225} \\ \text{Reply from 212 FQ 241 121. by tes -22 time -162ms TTL -220} \end{array}$		
		•	Reply Thom 212.58.241.151: Dytes=52 time=162ms TTL=229		
	Appr	Ping statis	Reply from 212.58.241.131: bytes=32 time=163ms TTL=229		
		U			
		Packets	Ping statistics for 212.58.241.131:		
			Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),		
			Approximate round trip times in milli-seconds:		
			Minimum = 160ms, Maximum = 163ms, Average = 161ms		

NETWORKING BASICS

Handy network utilities

ipconfig (Windows), ifconfig (Mac/unix)
 o Find out your wired/wireless IP address

c:\ipconfig

Windows IP Configuration

Ethernet adapter Local Area Connection:

SINGLE-THREAPER EXAMPLE Magic 8 ball: Internet Edition

• Server:

- o katie.mtech.edu, public IP address
- Running on port 5000
- Delivering 1 of 20 messages
- Services a single client at a time

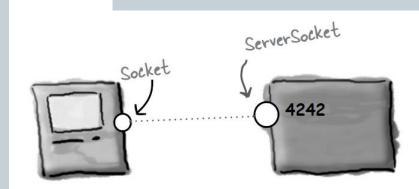
• Client(s):

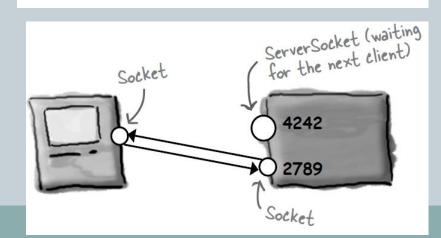
- My laptop on the wireless network
- Your laptop on the wireless network
- Private IP address
- Displays message from the server

SINGLE-THREAPER EXAMPLE Magic 8 ball: Persistent Connections

- Original version: One prediction per connection
- Persistent version:
 - A *protocol* between client and server

Client	Server
	Wait for client
Make connection to server	
Send name of user	
	Send first fortune
Receive first fortune	
Send "MORE"	
	Receive command "MORE"
	Send second fortune
Receive second fortune	
Send "QUIT"	
Close socket	Receive command "QUIT"
	Close socket


MULTI-THREAPER EXAMPLE Magic 8 ball: Multi-threaded server Server Socket


• Problem with persistent version:

- One client can hog the 8-ball for a long time
- Multi-threaded server:
 - Spawn a thread to handle each client
 - Server's main thread can then wait for a new client

Summary

Networking basics

- Difference between: clients and servers
- Addressing
 - × IP addresses, hostnames, DNS
 - × Private addresses, localhost
- Port numbers
- Socket communication
 - Byte-level communication between two hosts
 - Java client: reading/writing text
 - Java server: accepting clients, reading/writing tex
- Single threaded examples
 - Magic-8 ball
 - Magic-8 ball persistent
- Multi-threaded servers
 - Magic-8 ball multi-threaded server
 - Shared key/value server

